Chaoticity of some chemical attractors: a computer assisted proof

Yan Huang
Department of Mathematics, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Xiao-Song Yang*
Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
E-mail: yangxs@cqupt.edu.cn

Received 8 February 2005; revised 14 February 2005

Abstract

In this paper we study dynamics of two chemical attractors. By means of computer assisted proof, we show that these chemical attractors are chaotic in terms of positive entropy. We prove that the fourth power of the Poincaré map derived from one chemical attractor and the second power of the Poincaré map derived from the other chemical attractor are semi-conjugate to the 2-shift map, therefore the entropies of the two Poincaré maps are not less than $\frac{1}{4} \log 2$ and $\frac{1}{2} \log 2$, respectively. The positivity of entropies of these two maps shows that the corresponding attractors are chaotic.

KEY WORDS: chemical attractors, horseshoe, Poincaré map, shift map
AMS subject classification: 34D15, 34D35, 37C10

1. Introduction

Chemical dynamics in a well-stirred reactor provides one of the most clearcut examples of complex nonequilibrium behavior, since it can generate deterministic chaos from the intrinsic nonlinearities of the dynamics rather than from the spatial degrees of freedom. Since this form of chaos is amenable to a small number of macrovariables, one may reasonably expect that it constitutes an ideal case study for understanding the passage from microscopic to macroscopic behavior [1].

Chaotic dynamics is characterized by its sensitivity to initial conditions and is susceptible to external disturbances. Questions such as chaotic dynamics amplify internal noises and destroy the macroscopic description, and what

[^0]the deterministic chemical chaos would become in the picture of a microscopic description beyond the phenomenological kinetics, are of much interest [2].

The study of chemically reacting systems through microscopic simulations is a subject of growing interest [3,4]. In this paper, we study dynamics of a class of chemical attractors. Different from the published papers that study chaotic chemical dynamics mainly by compute simulations, we show that these chemical attractors are chaotic by giving a compute-assisted proof based on horseshoe theory of dynamical systems, which is a powerful tool in studying chaos. Precisely, we prove the following facts: the entropies of the two Poincare maps are not less than $\frac{1}{4} \log 2$ and $\frac{1}{2} \log 2$, respectively. The entropies of these two maps are positive, showing that the corresponding attractors are chaotic.

2. Two models of chemical system

2.1. Chemical system I

An interesting chemical system is established in [1], which is described by the following relations:

$$
\begin{align*}
& A_{1}+X_{1} \xrightarrow{\stackrel{k_{1}}{\longleftrightarrow}} 2 X_{1}, X_{1}+Y_{1} \xrightarrow{k_{2}} 2 Y_{1} . \\
& A_{5}+Y_{1} \xrightarrow{k_{3}} A_{3}, X_{1}+Z_{1} \xrightarrow{k_{4}} A_{3}, A_{4}+Z_{1} \stackrel{{ }_{\overleftarrow{k}}}{\stackrel{k_{5}}{\longrightarrow}} 2 Z_{1}
\end{align*}
$$

The model exhibits a wide variety of dynamical behaviors including chaos. The model features two autocatalytic steps involving constituents X and Z, coupled through three other steps one of which is autocatalytic involving X, Z, and a third constituent Y. Assuming an ideal mixture and a well-stirred reactor, the macroscopic rate equations for the above system read as [1],

$$
\begin{align*}
& \dot{x}_{1}=\alpha_{1} x_{1}-k_{-1} x_{1}^{2}-x_{1} y_{1}-x_{1} z_{1} \\
& \dot{y}_{1}=x_{1} y_{1}-\alpha_{5} y_{1} \tag{2}\\
& \dot{z}_{1}=\alpha_{4} z_{1}-x_{1} z_{1}-k_{-5} z_{1}^{2}
\end{align*}
$$

where x_{1}, y_{1} and z_{1} are the mole fractions of X_{1}, Y_{1} and Z_{1}. The rate constants have been incorporated in the parameters α_{1}, α_{5} and α_{4} (e.g., $\alpha_{1}=k_{1}\left(A_{1}\right)$). For more detailed discussions about this system see [1].

2.2. Chemical system II

In [2], the authors have studied a master equation for the chemical Lorenz system by means of ensemble stochastic simulations. The new model can be readily interpreted chemically on the base of mass action law as follows:

$$
\begin{array}{lll}
X_{2}+Y_{2}+Z_{2} \xrightarrow{c_{1}} X_{2}+2 Z_{2}, & 2 X_{2} \xrightarrow{c_{6}} P_{2}, & Y_{2} \xrightarrow{c_{11}} P_{6} \\
B_{1}+X_{2}+Y_{2} \xrightarrow{c_{2}} 2 X_{2}+Y_{2}, & 2 Y_{2} \xrightarrow{c_{7}} P_{3}, & B_{4}+Y_{2} \xrightarrow{c_{12}} 2 Y_{2} \\
B_{2}+X_{2}+Y_{2} \xrightarrow{c_{3}} X_{2}+2 Y_{2}, & 2 Z_{2} \xrightarrow{c_{8}} P_{4}, & B_{5}+Z_{2} \xrightarrow{c_{13}} 2 Z_{2} \tag{3}\\
X_{2}+Z_{2} \xrightarrow{c_{4}} X_{2}+P_{1}, & B_{3}+X_{2} \xrightarrow{c_{9}} 2 X_{2} \\
Y_{2}+Z_{2} \xrightarrow{c_{5}} 2 Y_{2}, & X_{2} \xrightarrow{c_{10}} P_{5}
\end{array}
$$

In the above reaction network, parameters $c_{i}(i=1,2, \ldots, 13)$ over the arrows are rate constants. Concentrations of species $B_{i}(i=1,2, \ldots, 5)$ and $P_{i}(i=$ $1,2, \ldots, 6)$ are assumed to be constant [2]. Given a well-stirred reactor and ideal mixture, the phenomenological rate equations of mass action law for the above reaction system read

$$
\begin{align*}
\stackrel{\circ}{x_{2}} & =c_{2} x_{2} y_{2}-2 c_{6} x_{2}^{2}+c_{9} x_{2}-c_{10} x_{2}, \\
\stackrel{\circ}{y_{2}} & =-c_{1} x_{2} y_{2} z_{2}+c_{3} x_{2} y_{2}+c_{5} y_{2} z_{2}-2 c_{7} y_{2}^{2}-c_{11} y_{2}+c_{12} y_{2}, \tag{4}\\
\circ & \circ \\
z_{2} & =c_{1} x_{2} y_{2} z_{2}-c_{4} x_{2} z_{2}-c_{5} y_{2} z_{2}-2 c_{8} z_{2}^{2}+c_{13} z_{2}^{2},
\end{align*}
$$

where x_{2}, y_{2} and z_{2} are concentrations of species X_{2}, Y_{2} and Z_{2}, respectively, and concentrations of $B_{i}(i=1,2,5)$ have been incorporated into the rate constants $c_{2}, c_{3}, c_{9}, c_{12}$, and c_{13}. Equation (4) can exhibit various nonlinear behaviors qualitatively similar to the original Lorenz system [2]. Furthermore, as shown in this paper: the attractor of (4) has different topological structure from that of Lorenz system when the parameter c_{1} be modified.

The purpose of this paper is to present a rigorous computer-assisted proof for chaotic behaviors of the attractors of (2) and (4) by virtue of a recent result of horseshoes theory in dynamical systems [5, 6].

3. Review of a topological Horseshoe theorem

In this section, we recall a result on Horseshoes theory developed in [5], which is essential for rigorous verification of existence of chaos in the modified Chen's attractors discussed in this paper.

Let X be a metric space, D is a compact subset of X, and $f: D \rightarrow X$ is map satisfying the assumption that there exist m mutually disjoint subsets D_{1}, \ldots, D_{m} of D, the restriction of f to each D_{i} i.e., $f \mid D_{i}$ is continuous.

Definition 1. Let γ be a compact subset of D, such that for each $1 \leqslant i \leqslant m, \gamma_{i}=$ $\gamma \cap D_{i}$ is nonempty and compact, then γ is called a connection with respect to D_{1}, \ldots, D_{m}.

Let F be a family of connections γ s with respect to D_{1}, \ldots, D_{m} satisfying the following property:

$$
\gamma \in F \Rightarrow f\left(\gamma_{i}\right) \in F
$$

Then F is said to be a f-connected family with respect to D_{1}, \ldots, D_{m}.
Theorem 2. Suppose that there exists a f-connected family F with respect to D_{1}, \ldots, D_{m}. Then there exists a compact invariant set $K \subset D$, such that $f \mid K$ is semi-conjugate to m-shift

For the proof of this theorem, see [5].
Here the 'semi-conjugate to the m-shift' is conventionally defined in the following sense. If there exists a continuous and onto map

$$
h: K \rightarrow \Sigma_{m}
$$

such that $h \circ f=\sigma \circ h$, then f is said to be semi-conjugate to σ, where σ is the m-shift (map) and \sum_{m} is the space of symbolic sequences to be defined below. Let $S_{m}=\{1, \ldots, m\}$ be the set of nonnegative successive integer from 1 to m. Let \sum_{m} be the collection of all one-infinite sequences with their elements of S_{m}, i.e., every element s of \sum_{m} is of the following form:

$$
s=\left\{s_{1}, \ldots, s_{m}, \ldots\right\}, \quad s_{i} \in S_{m}
$$

Now consider another sequence $\bar{s}_{i} \in S_{m}$. The distance between s and \bar{s} is defined as

$$
\begin{equation*}
d(s, \bar{s})=\sum_{i=1}^{+\infty} \frac{1}{2^{[\mathrm{i} \mid}} \frac{\left|s_{i}-\bar{s}_{i}\right|}{\left|s_{i}-\bar{s}_{i}\right|+1} \tag{5}
\end{equation*}
$$

with the distance defined as (5), \sum_{m} is a metric space, and the m-shift map $\sigma: \sum_{m} \rightarrow \sum_{m}$ is defined as follows:

$$
\sigma(s)_{i}=s_{i+1}, \quad s=\left\{s_{1}, \ldots, s_{m}, \ldots\right\}
$$

For the concept of topological entropy, the reader can refer [7, 8]. We just recall the result stated in the lemma 3, which will be used in this paper.

Lemma 3. Let X be a compact metric space, and $f: X \rightarrow X$ a continuous map. If there exists an invariant set $\Lambda \subset X$ such that $f \mid \Lambda$ is semi-conjugate to the m-shift σ, then

Figure 1. (a) The orbit of (2) for $\alpha_{1}=28.5$; (b) The orbit of (2) for $\alpha_{1}=30.1$.

$$
h(f) \geqslant h(\sigma)=\log m
$$

where $h(f)$ denotes the entropy of the map f. In addition, for every positive integer k,

$$
h\left(f^{k}\right)=k h(f)
$$

A well-known fact is that if the entropy of continuous map is positive, then the map is chaotic [8].

4. Analyses of the two chemical systems

4.1. Dynamics of chemical system I

In [1], the author have claimed that chaotic attractor can be generated when $\alpha_{1}=30, \alpha_{5}=10$ and $\alpha_{4}=16.5, k_{-1}=0.415, k_{-5}=0.5$. Note that the parameter α_{1} is an adjustable rate constant, the dynamics of (2) will be discussed for α_{1} varying from 28.5 to 30.6 , because the dynamics of (2) is trivial when $\alpha_{1}<28.5$ or $\alpha_{1}>30.6$. Let $\alpha_{1}=28.5$, we have the orbit as shown in figure 1(a). Computer simulations show that each orbit of (2) approaches to the stable equilibrium $(0,0,33)$ in the phase space for $\alpha_{1} \in[28.5,28.6159]$. As we increase α_{1} up slowly, a strange attractor emerges. Computer calculations show that one of the Lyapunov exponents of (2) is positive for $\alpha_{1} \in[28.616,30.6]$, which is a numerical evidence that (2) is chaotic. In the next subsection, we present a proof by means of results in section 3 .

4.2. Proof of chemical system I

In (2), let $\alpha_{1}=28.8, \alpha_{5}=10$ and $\alpha_{4}=16.5, k_{-1}=0.415, k_{-5}=0.5$, we have the attractor as shown in figure 2 . Denote by $\varphi_{1}(x, t)$, the solution of (2) with initial condition x, i.e., $\varphi_{1}(x, 0)=x$. Consider the cross-section M_{1} as shown in figure 1 , with it's four vertices being $(0,40,5),(10,40,5),(10,40,-2)$ and $(0,40,-2)$.

Figure 2. The attractor of (2) and cross-section.

We will study the corresponding Poincaré map on a subset of M_{1}. We select the quadrangle $|A B C D|$ with its vertices being $A(3.7447,40,1.0453)$, $B(3.7834,40,1.0629), C(3.8236,40,1.0698)$ and $D(3.7948,40,1.055)$.

$$
P:|A B C D| \rightarrow M_{1}
$$

The map P is defined as follows: for each point $x \in|A B C D|, P(x)$ is the first return intersection point with M_{1} under the flow with initial condition x. In order to find horseshoes, we consider $P_{1}=P^{4}$.

Now we want to find two subsets of $|A B C D|$ as the subset D_{1}, D_{2} defined in definition 1. By a great deal of computer simulation, we find two subset a_{1} and a_{2} of $|A B C D|$. The four vertices of a_{1} are $(3.7815,40,1.0620)$, $(3.7834,40,1.0629),(3.8236,40,1.0698)$ and $(3.8223,40,1.0691)$. The four vertexes of a_{2} are (3.7447, 40, 1.0453), (3.7528, 40, 1.0490), (3.8019, 40, 1.0586) and (3.7948, 40, 1.0550).

The subsets a_{1} and a_{2} of $|A B C D|$ is shown in figure 3.

Figure 3. (a) The blocks a_{1}, a_{2} and the image of a_{1}; (b) The blocks a_{1}, a_{2} and the image of a_{2}.

Now let u_{1} and u_{2} be the upper sides of a_{1} and a_{2}, respectively, and d_{1} and d_{2} be the low sides of a_{1} and a_{2}, respectively. Then the computer computations show that $P_{1}\left(u_{1}\right)$ and $P_{1}\left(d_{2}\right)$ lie below the side $d_{2}, P_{1}\left(d_{1}\right)$ and $P_{1}\left(u_{2}\right)$ lie above the side u_{1} as shown in figure 3 .

It is easy to see from figure 3 that every line l lying in $|A B C D|$ and connecting the side $A D$ and $B C$ has nonempty connections with a_{1} and a_{2}. Furthermore, $P_{1}\left(l \cap a_{1}\right)$ connects $A D$ and $B C$ from the above arguments, $P_{1}\left(l \cap a_{2}\right)$ also connects $A D$ and $B C$. Therefore, it is easy to see, in view of definition 1, that there exists a P_{1}-family with respect to these two subsets a_{1} and a_{2} for the map P_{1}. It follows from Theorem 2 that there exists an invariant set K of $|A B C D|$, such that P_{1} restricted to K is semi-conjugated to 2 -shift dynamics. Let $h\left(P_{1}\right)$ be the entropy of the map P_{1}, it can be concluded from Lemma 3 that $h\left(P_{1}\right)=h\left(P^{4}\right) \geqslant h(\sigma)=\log 2$, consequently the entropy of the map P_{1} is not less than $\frac{1}{4} \log 2$.

4.3. A study on chemical system II

In [2], the authors claimed that a deterministic chaotic trajectory can be generated when $c_{1}=0.88, c_{2}=10, c_{3}=29, c_{4}=100, c_{5}=100, c_{6}=5, c_{7}=$ $0.5, c_{8}=1.3333, c_{9}=1000, c_{10}=1000, c_{11}=2900, c_{12}=100, c_{13}=10002.6667$. Note that the parameter c_{1} is an adjustable rate constant, the dynamics (4) will be discussed when c_{1} varies from 0.35 to 1.001 , because the dynamics of (2) is trivial when $c_{1}<0.35$ or $c_{1}>1.001$.

In (4), let $c_{1}=0.88$, we have the attractor and equilibria as shown in figure 5. When we increase the parameter c_{1}, we first observed periodical trajectory in the phase space as illustrated in the following figure 4. There are two negative Lyapunov exponents and one zero Lyapunov exponents for the systems with $c_{1} \in[0.35,0.8650]$, it can be concluded that the observed periodical trajectory is a limit cycle when $c_{1} \in[0.35,0.8650]$. As we increase c_{1} up slowly, the limit cycle disappears, and a strange attractor emerges. Computer calculations show that one of the Lyapunov exponents is positive for the systems with $c_{1} \in[0.8655,1.001]$. From compute simulation, we see that the chaotic attractor disappears when $c_{1} \geqslant 1.002$.

Figure 4. (a) The orbit of (4) for $c_{1}=0.35$; (b) The attractor of (4) for $c_{1}=0.87$.

Figure 5. The attractor of (4) and its equilibria.
An important point to be stressed here is that although (4) is motivated by Lorenz system, the attractor of (4) has different topological structure from that of Lorenz system. The chemical system described by (4) have eight equilibria (figure 5). Among all of the equilibria, the equilibrium $(100,100,0)$ is nearer to the attractor than others. The compute simulations show that the attractor lays out side of the open ball with center at $(100,100,0)$ and radius being 1.1358. Therefore, contrary to the Lorenz system, the closure of this chaotic attractor does not contain any equilibrium.

4.4. Proof of chemical system II

Denote by $\varphi_{2}(x, t)$, the solution of (2) with initial condition x, i.e. $\varphi_{2}(x, 0)=$ x. Consider the cross-section M_{2} as shown in figure 6, with it's four vertices being ($170,200,250$), ($340,200,250$), ($340,200,80$) and ($170,200,80$).

We will study the corresponding Poincaré map on a subset of M_{2}. We select the quadrangle $|E F G H|$ with its vertices being $E(220.2207,200,153.1022)$,

Figure 6. The attractor of (4) and its cross-section.

Figure 7. The quadrangle $|E F G H|$ and its image.
$F(243.6201,200,205.8623), G(244.6257,200,203.1022)$ and $H(220.2207,200$, 147.6277).

$$
\bar{P}:|E F G H| \rightarrow M_{2}
$$

The map \bar{P} is defined as follows: for each point $x \in|E F G H|, \bar{P}(x)$ is the first return intersection point with M_{2} under the flow with initial condition x. In order to find horseshoes, we consider twice composition of the map \bar{P}, that is \bar{P}^{2}, let $P_{2}=\bar{P}^{2}$.

Under this map P_{2}, the image of the quadrangle $|E F G H|$ is a very thin strip across $|E F G H|$ as shown in figure 7. Now we want to find two subsets of $|E F G H|$ as the subset D_{1}, D_{2} defined in definition 1 . By a great deal of computer simulation, we find two subsets b_{1} and b_{2} of $|E F G H|$. The four vertices of b_{1} are (220.2207, 200, 153.1022), (229.58, 200, 174.21), (231.2, 200, 172.59) and (220.2207, 200, 147.6277). The four vertexes of b_{2} are (230.17, 200, 175.53), (243.6201, 200, 205.8623), (244.6257, 200, 203.1022) and (231.81, 200, 173.98).

The subsets b_{1} and b_{2} of $|E F G H|$ is shown in figures 8 and 9 .

Figure 8. The blocks b_{1} and b_{2} and the image of b_{1}.

Figure 9. The blocks b_{1} and b_{2} and the image of b_{2}.
Now let l_{1} and l_{2} be the left sides of b_{1} and b_{2}, respectively, and r_{1} and r_{2} be the low sides of b_{1} and b_{2}, respectively. Then the computer computations show that $P_{2}\left(l_{1}\right)$ and $P_{2}\left(r_{2}\right)$ lie on the left side of $l_{1}, P_{2}\left(l_{2}\right)$ and $P_{2}\left(r_{1}\right)$ lie on the right side of r_{2}, as shown in figures 8 and 9 .

It is easy to see from figures 8 and 9 that every line l lying in $|E F G H|$ and connecting the side l_{1} and r_{2} has nonempty connections with b_{1} and b_{2}. Furthermore, $P_{2}\left(l \cap b_{1}\right)$ connects l_{1} and r_{2} from the above arguments, $P_{2}\left(l \cap b_{2}\right)$ also connects l_{1} and r_{2}. Therefore, it is easy to see, in view of Definition 1, that there exists a P_{2}-family with respect to these two subsets b_{1} and b_{2} for the map P_{2}. It follows from Theorem 2 that there exists an invariant set K of $|E F G H|$, such that P_{2} restricted to K is semi-conjugated to 2-shift dynamics. Let $h\left(P_{2}\right)$ be the entropy of the map P_{2}, it can be concluded from Lemma 3 that $h\left(P_{2}\right)=h\left(\bar{p}^{2}\right) \geqslant$ $h(\sigma)=\log 2$, consequently the entropy of the map P_{2} is not less than $\frac{1}{2} \log 2$.

5. Conclusion

In this paper we study dynamics of two chemical attractors. We show that these chemical attractors are chaotic by means of computer assisted proof. We prove that the fourth power of the Poincare map derived from the system I and the second power of the Poincare map derived from the system II are semiconjugate to the 2 -shift map based on a newly established theorem 2 [5] on the existence of topological horseshoe and computer simulation. Therefore the entropies of the two Poincaré maps are not less than $\frac{1}{4} \log 2$ and $\frac{1}{2} \log 2$, respectively, showing that the corresponding attractors are chaotic.

Acknowledgment

The research is partially supported by Talents Foundation of Huazhong University of Science and Technology (0101011092), and partially supported by Program for New Century Excellent Talents in University.

References

[1] P. Geysermans and G. Nicolis, Thermodynamic fluctuations and chemical chaos in a well-stirred reactor: A master equation analysis. J. Chem. Phys. 99(11) (1993) 8964-8969.
[2] Hongli Wang and Qian-Shu Li, Microscopic dynamics of deterministic chemical chaos. J. Phys. Chem. A. 104 (2000) 472-475.
[3] Rui Zhu and Qian Shu Li, Mesoscopic description of a chemical bistable state. J. Chem. Phys. 116(9) (2002) 3900-3904.
[4] P. Geysermans and F. Baras, Particle simulation of chemical chaos. J. Chem. Phys. 105(4) (1996) 1402-1408.
[5] X.-S. Yang and Y. Tang, Horseshoes in piecewise continuous maps. Chaos, Solitons \& Fractals. 19 (2004) 841-845.
[6] X.-S. Yang, Metric horseshoes. Chaos, Solitons \& Fractals. 20 (2004) 1149-1156.
[7] S. Wiggins, Introduction to Applied Nonlinear Dynamical systems and Chaos (Springer-Verlag, New York, 1990).
[8] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Inc., Boca Raton, 1995).

[^0]: * Corresponding author.

