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Chaoticity of some chemical attractors:
a computer assisted proof
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In this paper we study dynamics of two chemical attractors. By means of computer
assisted proof, we show that these chemical attractors are chaotic in terms of positive
entropy. We prove that the fourth power of the Poincaré map derived from one chemi-
cal attractor and the second power of the Poincaré map derived from the other chemical
attractor are semi-conjugate to the 2-shift map, therefore the entropies of the two Poin-
caré maps are not less than 1

4 log 2 and 1
2 log 2, respectively. The positivity of entropies

of these two maps shows that the corresponding attractors are chaotic.

KEY WORDS: chemical attractors, horseshoe, Poincaré map, shift map
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1. Introduction

Chemical dynamics in a well-stirred reactor provides one of the most clear-
cut examples of complex nonequilibrium behavior, since it can generate deter-
ministic chaos from the intrinsic nonlinearities of the dynamics rather than from
the spatial degrees of freedom. Since this form of chaos is amenable to a small
number of macrovariables, one may reasonably expect that it constitutes an
ideal case study for understanding the passage from microscopic to macroscopic
behavior [1].

Chaotic dynamics is characterized by its sensitivity to initial conditions
and is susceptible to external disturbances. Questions such as chaotic dynam-
ics amplify internal noises and destroy the macroscopic description, and what
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the deterministic chemical chaos would become in the picture of a microscopic
description beyond the phenomenological kinetics, are of much interest [2].

The study of chemically reacting systems through microscopic simulations
is a subject of growing interest [3,4]. In this paper, we study dynamics of a class
of chemical attractors. Different from the published papers that study chaotic
chemical dynamics mainly by compute simulations, we show that these chemi-
cal attractors are chaotic by giving a compute-assisted proof based on horseshoe
theory of dynamical systems, which is a powerful tool in studying chaos. Pre-
cisely, we prove the following facts: the entropies of the two Poincaré maps are
not less than 1

4 log 2 and 1
2 log 2, respectively. The entropies of these two maps

are positive, showing that the corresponding attractors are chaotic.

2. Two models of chemical system

2.1. Chemical system I

An interesting chemical system is established in [1], which is described by
the following relations:

A1 +X1
k1−→ 2X1, X1 + Y1

k2−→ 2Y1.

←−
k−1

k5−→
A5 + Y1

k3−→A3, X1 + Z1
k4−→A3, A4 + Z1 2Z1

←−
k−5

(1)

The model exhibits a wide variety of dynamical behaviors including chaos.
The model features two autocatalytic steps involving constituents X and Z, cou-
pled through three other steps one of which is autocatalytic involving X, Z, and
a third constituent Y . Assuming an ideal mixture and a well-stirred reactor, the
macroscopic rate equations for the above system read as [1],

ẋ1 = α1x1 − k−1x
2
1 − x1y1 − x1z1

ẏ1 = x1y1 − α5y1 (2)

ż1 = α4z1 − x1z1 − k−5z
2
1

where x1, y1 and z1 are the mole fractions of X1, Y1 and Z1. The rate constants
have been incorporated in the parameters α1, α5 and α4 (e.g., α1 = k1(A1)). For
more detailed discussions about this system see [1].
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2.2. Chemical system II

In [2], the authors have studied a master equation for the chemical Lor-
enz system by means of ensemble stochastic simulations. The new model can be
readily interpreted chemically on the base of mass action law as follows:

X2 + Y2 + Z2
c1−→X2 + 2Z2, 2X2

c6−→P2, Y2
c11−→P6

B1 +X2 + Y2
c2−→ 2X2 + Y2, 2Y2

c7−→P3, B4 + Y2
c12−→ 2Y2

B2 +X2 + Y2
c3−→X2 + 2Y2, 2Z2

c8−→P4, B5 + Z2
c13−→ 2Z2 (3)

X2 + Z2
c4−→X2 + P1, B3 +X2

c9−→ 2X2

Y2 + Z2
c5−→ 2Y2, X2

c10−→P5

In the above reaction network, parameters ci(i=1, 2, . . . , 13) over the
arrows are rate constants. Concentrations of species Bi(i=1, 2, . . . , 5) and Pi(i =
1, 2, . . . , 6) are assumed to be constant [2]. Given a well-stirred reactor and ideal
mixture, the phenomenological rate equations of mass action law for the above
reaction system read

◦
x2 = c2x2y2 − 2c6x

2
2 + c9x2 − c10x2,

◦
y2 = −c1x2y2z2 + c3x2y2 + c5y2z2 − 2c7y

2
2 − c11y2 + c12y2, (4)

◦
z2 = c1x2y2z2 − c4x2z2 − c5y2z2 − 2c8z

2
2 + c13z

2
2,

where x2, y2 and z2 are concentrations of species X2, Y2 and Z2, respectively, and
concentrations of Bi(i = 1, 2, 5) have been incorporated into the rate constants
c2, c3, c9, c12, and c13. Equation (4) can exhibit various nonlinear behaviors qual-
itatively similar to the original Lorenz system [2]. Furthermore, as shown in this
paper: the attractor of (4) has different topological structure from that of Lorenz
system when the parameter c1 be modified.

The purpose of this paper is to present a rigorous computer-assisted proof
for chaotic behaviors of the attractors of (2) and (4) by virtue of a recent result
of horseshoes theory in dynamical systems [5,6].

3. Review of a topological Horseshoe theorem

In this section, we recall a result on Horseshoes theory developed in [5],
which is essential for rigorous verification of existence of chaos in the modified
Chen’s attractors discussed in this paper.

Let X be a metric space, D is a compact subset of X, and f : D→ X is map
satisfying the assumption that there exist m mutually disjoint subsets D1, . . . , Dm

of D, the restriction of f to each Di i.e., f |Di is continuous.
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Definition 1. Let γ be a compact subset of D, such that for each 1 � i � m, γi =
γ ∩Di is nonempty and compact, then γ is called a connection with respect to
D1, . . . , Dm.

Let F be a family of connections γ s with respect to D1, . . . , Dm satisfying
the following property:

γ ∈ F ⇒ f (γi) ∈ F.

Then F is said to be a f -connected family with respect to D1, . . ., Dm.

Theorem 2. Suppose that there exists a f -connected family F with respect to
D1, . . ., Dm. Then there exists a compact invariant set K ⊂ D, such that f |K
is semi-conjugate to m-shift

For the proof of this theorem, see [5].
Here the ‘semi-conjugate to the m-shift’ is conventionally defined in the fol-

lowing sense. If there exists a continuous and onto map

h : K → �m,

such that h ◦ f = σ ◦h, then f is said to be semi-conjugate to σ , where σ is the
m-shift (map) and

∑
m is the space of symbolic sequences to be defined below.

Let Sm = {1, . . . , m} be the set of nonnegative successive integer from 1 to m.
Let

∑
m be the collection of all one-infinite sequences with their elements of Sm,

i.e., every element s of
∑

m is of the following form:

s = {s1, . . . , sm, . . . }, si ∈ Sm.

Now consider another sequence s̄i ∈ Sm. The distance between s and s̄ is defined as

d(s, s̄) =
+∞∑

i=1

1
2|i|

|si − s̄i |
|si − s̄i | + 1

(5)

with the distance defined as (5),
∑

m is a metric space, and the m-shift map
σ:

∑
m→

∑
m is defined as follows:

σ(s)i = si+1, s = {s1, . . . , sm, . . . }.
For the concept of topological entropy, the reader can refer [7,8]. We just recall
the result stated in the lemma 3, which will be used in this paper.

Lemma 3. Let X be a compact metric space, and f : X → X a continuous map.
If there exists an invariant set � ⊂ X such that f |� is semi-conjugate to the
m-shift σ , then
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Figure 1. (a) The orbit of (2) for α1 = 28.5; (b) The orbit of (2) for α1 = 30.1.

h(f ) � h(σ) = log m,

where h(f ) denotes the entropy of the map f . In addition, for every positive
integer k,

h(f k) = kh(f ).

A well-known fact is that if the entropy of continuous map is positive, then
the map is chaotic [8].

4. Analyses of the two chemical systems

4.1. Dynamics of chemical system I

In [1], the author have claimed that chaotic attractor can be generated when
α1 = 30, α5 = 10 and α4 = 16.5, k−1 = 0.415, k−5 = 0.5. Note that the parame-
ter α1 is an adjustable rate constant, the dynamics of (2) will be discussed for α1

varying from 28.5 to 30.6, because the dynamics of (2) is trivial when α1 < 28.5
or α1 > 30.6. Let α1 = 28.5, we have the orbit as shown in figure 1(a). Com-
puter simulations show that each orbit of (2) approaches to the stable equilib-
rium (0, 0, 33) in the phase space for α1 ∈ [28.5, 28.6159]. As we increase α1 up
slowly, a strange attractor emerges. Computer calculations show that one of the
Lyapunov exponents of (2) is positive for α1 ∈ [28.616, 30.6], which is a numer-
ical evidence that (2) is chaotic. In the next subsection, we present a proof by
means of results in section 3.

4.2. Proof of chemical system I

In (2), let α1 = 28.8, α5 = 10 and α4 = 16.5, k−1 = 0.415, k−5 = 0.5, we
have the attractor as shown in figure 2. Denote by ϕ1(x, t), the solution of
(2) with initial condition x, i.e., ϕ1(x, 0)=x. Consider the cross-section M1 as
shown in figure 1, with it’s four vertices being (0, 40, 5), (10, 40, 5), (10, 40,−2)

and (0, 40,−2).
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Figure 2. The attractor of (2) and cross-section.

We will study the corresponding Poincaré map on a subset of M1. We
select the quadrangle |ABCD| with its vertices being A(3.7447, 40, 1.0453),
B(3.7834, 40, 1.0629), C(3.8236, 40, 1.0698) and D(3.7948, 40, 1.055).

P : |ABCD| → M1

The map P is defined as follows: for each point x ∈ |ABCD| , P (x) is the
first return intersection point with M1 under the flow with initial condition x. In
order to find horseshoes, we consider P1 = P 4.

Now we want to find two subsets of |ABCD| as the subset D1, D2 defined
in definition 1. By a great deal of computer simulation, we find two sub-
set a1 and a2 of |ABCD|. The four vertices of a1 are (3.7815, 40, 1.0620),
(3.7834, 40, 1.0629), (3.8236, 40, 1.0698) and (3.8223, 40, 1.0691). The four ver-
texes of a2 are (3.7447, 40, 1.0453), (3.7528, 40, 1.0490), (3.8019, 40, 1.0586) and
(3.7948, 40, 1.0550).

The subsets a1 and a2 of |ABCD| is shown in figure 3.

Figure 3. (a) The blocks a1, a2 and the image of a1; (b) The blocks a1, a2 and the image of a2.
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Now let u1 and u2 be the upper sides of a1 and a2, respectively, and d1 and
d2 be the low sides of a1 and a2, respectively. Then the computer computations
show that P1(u1) and P1(d2) lie below the side d2, P1(d1) and P1(u2) lie above the
side u1 as shown in figure 3.

It is easy to see from figure 3 that every line l lying in |ABCD| and connect-
ing the side AD and BC has nonempty connections with a1 and a2. Furthermore,
P1(l ∩ a1) connects AD and BC from the above arguments, P1(l ∩ a2) also connects
AD and BC. Therefore, it is easy to see, in view of definition 1, that there exists a
P1-family with respect to these two subsets a1 and a2 for the map P1. It follows from
Theorem 2 that there exists an invariant set K of |ABCD|, such that P1 restricted to
K is semi-conjugated to 2-shift dynamics. Let h(P1) be the entropy of the map P1, it
can be concluded from Lemma 3 that h(P1) = h(P 4) � h(σ) = log 2, consequently
the entropy of the map P1 is not less than 1

4 log 2.

4.3. A study on chemical system II

In [2], the authors claimed that a deterministic chaotic trajectory can be
generated when c1 = 0.88, c2 = 10, c3 = 29, c4 = 100, c5 = 100, c6 = 5, c7 =
0.5, c8 = 1.3333, c9 = 1000, c10 = 1000, c11 = 2900, c12 = 100, c13 = 10002.6667.
Note that the parameter c1 is an adjustable rate constant, the dynamics (4) will
be discussed when c1 varies from 0.35 to 1.001, because the dynamics of (2) is
trivial when c1 < 0.35 or c1 > 1.001.

In (4), let c1=0.88, we have the attractor and equilibria as shown in
figure 5. When we increase the parameter c1, we first observed periodical tra-
jectory in the phase space as illustrated in the following figure 4. There are two
negative Lyapunov exponents and one zero Lyapunov exponents for the systems
with c1 ∈ [0.35, 0.8650], it can be concluded that the observed periodical tra-
jectory is a limit cycle when c1 ∈ [0.35, 0.8650]. As we increase c1 up slowly,
the limit cycle disappears, and a strange attractor emerges. Computer calcula-
tions show that one of the Lyapunov exponents is positive for the systems with
c1 ∈ [0.8655, 1.001]. From compute simulation, we see that the chaotic attractor
disappears when c1 � 1.002.

Figure 4. (a) The orbit of (4) for c1 = 0.35; (b) The attractor of (4) for c1 = 0.87.
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Figure 5. The attractor of (4) and its equilibria.

An important point to be stressed here is that although (4) is motivated
by Lorenz system, the attractor of (4) has different topological structure from
that of Lorenz system. The chemical system described by (4) have eight equilib-
ria (figure 5). Among all of the equilibria, the equilibrium (100, 100, 0) is nearer
to the attractor than others. The compute simulations show that the attractor
lays out side of the open ball with center at (100, 100, 0) and radius being 1.1358.
Therefore, contrary to the Lorenz system, the closure of this chaotic attractor
does not contain any equilibrium.

4.4. Proof of chemical system II

Denote by ϕ2(x, t), the solution of (2) with initial condition x, i.e. ϕ2(x, 0) =
x. Consider the cross-section M2 as shown in figure 6, with it’s four vertices
being (170, 200, 250), (340, 200, 250), (340, 200, 80) and (170, 200, 80).

We will study the corresponding Poincaré map on a subset of M2. We
select the quadrangle |EFGH | with its vertices being E(220.2207, 200, 153.1022),

Figure 6. The attractor of (4) and its cross-section.
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Figure 7. The quadrangle |EFGH | and its image.

F(243.6201, 200, 205.8623), G(244.6257, 200, 203.1022) and H (220.2207, 200,
147.6277).

P : |EFGH | → M2

The map P is defined as follows: for each point x ∈ |EFGH | , P (x) is the first
return intersection point with M2 under the flow with initial condition x. In order to
find horseshoes, we consider twice composition of the map P , that is P

2
, let P2 = P

2
.

Under this map P2, the image of the quadrangle |EFGH | is a very thin
strip across |EFGH | as shown in figure 7. Now we want to find two subsets of
|EFGH | as the subset D1, D2 defined in definition 1. By a great deal of com-
puter simulation, we find two subsets b1 and b2 of |EFGH |. The four verti-
ces of b1 are (220.2207, 200, 153.1022), (229.58, 200, 174.21), (231.2, 200, 172.59)

and (220.2207, 200, 147.6277). The four vertexes of b2 are (230.17, 200, 175.53),
(243.6201, 200, 205.8623), (244.6257, 200, 203.1022) and (231.81, 200, 173.98).

The subsets b1 and b2 of |EFGH | is shown in figures 8 and 9.

Figure 8. The blocks b1 and b2 and the image of b1.
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Figure 9. The blocks b1 and b2 and the image of b2.

Now let l1 and l2 be the left sides of b1 and b2, respectively, and r1 and r2 be
the low sides of b1 and b2, respectively. Then the computer computations show
that P2(l1) and P2(r2) lie on the left side of l1, P2(l2) and P2(r1) lie on the right
side of r2, as shown in figures 8 and 9.

It is easy to see from figures 8 and 9 that every line l lying in |EFGH | and
connecting the side l1 and r2 has nonempty connections with b1 and b2. Further-
more, P2(l ∩ b1) connects l1 and r2 from the above arguments, P2(l ∩ b2) also
connects l1 and r2. Therefore, it is easy to see, in view of Definition 1, that there
exists a P2 -family with respect to these two subsets b1 and b2 for the map P2.
It follows from Theorem 2 that there exists an invariant set K of |EFGH |, such
that P2 restricted to K is semi-conjugated to 2-shift dynamics. Let h(P2) be the
entropy of the map P2, it can be concluded from Lemma 3 that h(P2) = h(p2) �
h(σ) = log 2, consequently the entropy of the map P2 is not less than 1

2 log 2.

5. Conclusion

In this paper we study dynamics of two chemical attractors. We show that
these chemical attractors are chaotic by means of computer assisted proof. We
prove that the fourth power of the Poincaré map derived from the system I and
the second power of the Poincaré map derived from the system II are semi-
conjugate to the 2-shift map based on a newly established theorem 2 [5] on the
existence of topological horseshoe and computer simulation. Therefore the entro-
pies of the two Poincaré maps are not less than 1

4 log 2 and 1
2 log 2, respectively,

showing that the corresponding attractors are chaotic.
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